Local Calcium Signaling in Neurons

نویسندگان

  • George J Augustine
  • Fidel Santamaria
  • Keiko Tanaka
چکیده

Transient rises in the cytoplasmic concentration of calcium ions serve as second messenger signals that control many neuronal functions. Selective triggering of these functions is achieved through spatial localization of calcium signals. Several qualitatively different forms of local calcium signaling can be distinguished by the location of open calcium channels as well as by the distance between these channels and the calcium binding proteins that serve as the molecular targets of calcium action. Local calcium signaling is especially prominent at presynaptic active zones and postsynaptic densities, structures that are distinguished by highly organized macromolecular arrays that yield precise spatial arrangements of calcium signaling proteins. Similar forms of local calcium signaling may be employed throughout the nervous system, though much remains to be learned about the molecular underpinnings of these events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous brain-derived neurotrophic factor triggers fast calcium transients at synapses in developing dendrites.

Brain-derived neurotrophic factor (BDNF) is involved in many aspects of the formation of functional neuronal networks. BDNF signaling regulates neuronal development not only globally, at the level of entire neurons or networks, but also at a subcellular level and with high temporal specificity; however, the spatiotemporal characteristics of intrinsic BDNF signaling are essentially unknown. Here...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

GABA-A receptor inhibition of local calcium signaling in spines and dendrites.

Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2003